Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38562762

RESUMO

Targeting proteins to specific subcellular destinations is essential in prokaryotes, eukaryotes, and the viruses that infect them. Chimalliviridae phages encapsulate their genomes in a nucleus-like replication compartment composed of the protein chimallin (ChmA) that excludes ribosomes and decouples transcription from translation. These phages selectively partition proteins between the phage nucleus and the bacterial cytoplasm. Currently, the genes and signals that govern selective protein import into the phage nucleus are unknown. Here we identify two components of this novel protein import pathway: a species-specific surface-exposed region of a phage intranuclear protein required for nuclear entry and a conserved protein, PicA, that facilitates cargo protein trafficking across the phage nuclear shell. We also identify a defective cargo protein that is targeted to PicA on the nuclear periphery but fails to enter the nucleus, providing insight into the mechanism of nuclear protein trafficking. Using CRISPRi-ART protein expression knockdown of PicA, we show that PicA is essential early in the chimallivirus replication cycle. Together our results allow us to propose a multistep model for the Protein Import Chimallivirus (PIC) pathway, where proteins are targeted to PicA by amino acids on their surface, and then licensed by PicA for nuclear entry. The divergence in the selectivity of this pathway between closely-related chimalliviruses implicates its role as a key player in the evolutionary arms race between competing phages and their hosts. Significance Statement: The phage nucleus is an enclosed replication compartment built by Chimalliviridae phages that, similar to the eukaryotic nucleus, separates transcription from translation and selectively imports certain proteins. This allows the phage to concentrate proteins required for DNA replication and transcription while excluding DNA-targeting host defense proteins. However, the mechanism of selective trafficking into the phage nucleus is currently unknown. Here we determine the region of a phage nuclear protein that targets it for nuclear import and identify a conserved, essential nuclear shell-associated protein that plays a key role in this process. This work provides the first mechanistic model of selective import into the phage nucleus.

2.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38586942

RESUMO

When proteins evolve new activity, a concomitant decrease in stability is often observed because the mutations that confer new activity can destabilize the native fold. In the conventional model of protein evolution, reduced stability is considered a purely deleterious cost of molecular innovation because unstable proteins are prone to aggregation and are sensitive to environmental stressors. However, recent work has revealed that nonnative, often unstable protein conformations play an important role in mediating evolutionary transitions, raising the question of whether instability can itself potentiate the evolution of new activity. We explored this question in a bacteriophage receptor-binding protein during host-range evolution. We studied the properties of the receptor-binding protein of bacteriophage λ before and after host-range evolution and demonstrated that the evolved protein is relatively unstable and may exist in multiple conformations with unique receptor preferences. Through a combination of structural modeling and in vitro oligomeric state analysis, we found that the instability arises from mutations that interfere with trimer formation. This study raises the intriguing possibility that protein instability might play a previously unrecognized role in mediating host-range expansions in viruses.


Assuntos
Evolução Molecular , Receptores Virais , Mutação , Receptores Virais/genética , Receptores Virais/metabolismo , Ligação Proteica
3.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38578284

RESUMO

During mitosis, the Bub1-Bub3 complex concentrates at kinetochores, the microtubule-coupling interfaces on chromosomes, where it contributes to spindle checkpoint activation, kinetochore-spindle microtubule interactions, and protection of centromeric cohesion. Bub1 has a conserved N-terminal tetratricopeptide repeat (TPR) domain followed by a binding motif for its conserved interactor Bub3. The current model for Bub1-Bub3 localization to kinetochores is that Bub3, along with its bound motif from Bub1, recognizes phosphorylated "MELT" motifs in the kinetochore scaffold protein Knl1. Motivated by the greater phenotypic severity of BUB-1 versus BUB-3 loss in C. elegans, we show that the BUB-1 TPR domain directly recognizes a distinct class of phosphorylated motifs in KNL-1 and that this interaction is essential for BUB-1-BUB-3 localization and function. BUB-3 recognition of phospho-MELT motifs additively contributes to drive super-stoichiometric accumulation of BUB-1-BUB-3 on its KNL-1 scaffold during mitotic entry. Bub1's TPR domain interacts with Knl1 in other species, suggesting that collaboration of TPR-dependent and Bub3-dependent interfaces in Bub1-Bub3 localization and functions may be conserved.


Assuntos
Proteínas de Caenorhabditis elegans , Proteínas de Ciclo Celular , Cinetocoros , Proteínas Associadas aos Microtúbulos , Proteínas Serina-Treonina Quinases , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Repetições de Tetratricopeptídeos , Proteínas Serina-Treonina Quinases/metabolismo
4.
Commun Biol ; 7(1): 251, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429335

RESUMO

Tau is a microtubule-associated protein often found in neurofibrillary tangles (NFTs) in the brains of patients with Alzheimer's disease. Beyond this context, mounting evidence suggests that tau localizes into the nucleus, where it may play a role in DNA protection and heterochromatin regulation. The molecular mechanisms behind these observations are currently unclear. Using in vitro biophysical experiments, here we demonstrate that tau can undergo liquid-liquid phase separation (LLPS) with DNA, mononucleosomes, and reconstituted nucleosome arrays under low salt conditions. Low concentrations of tau promote chromatin compaction and protect DNA from digestion. While the material state of samples at physiological salt is dominated by chromatin oligomerization, tau can still associate strongly and reversibly with nucleosome arrays. These properties are driven by tau's strong interactions with linker and nucleosomal DNA. In addition, tau co-localizes into droplets formed by nucleosome arrays and phosphorylated HP1α, a key heterochromatin constituent thought to function through an LLPS mechanism. Importantly, LLPS and chromatin interactions are disrupted by aberrant tau hyperphosphorylation. These biophysical properties suggest that tau may directly impact DNA and chromatin accessibility and that loss of these interactions could contribute to the aberrant nuclear effects seen in tau pathology.


Assuntos
Cromatina , Proteínas tau , Humanos , Cromatina/química , Cromatina/metabolismo , DNA/metabolismo , Heterocromatina , Nucleossomos , 60422 , Fosforilação , Proteínas tau/química , Proteínas tau/metabolismo
5.
Nucleic Acids Res ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554115

RESUMO

Large-genome bacteriophages (jumbo phages) of the proposed family Chimalliviridae assemble a nucleus-like compartment bounded by a protein shell that protects the replicating phage genome from host-encoded restriction enzymes and DNA-targeting CRISPR-Cas nucleases. While the nuclear shell provides broad protection against host nucleases, it necessitates transport of mRNA out of the nucleus-like compartment for translation by host ribosomes, and transport of specific proteins into the nucleus-like compartment to support DNA replication and mRNA transcription. Here, we identify a conserved phage nuclear shell-associated protein that we term Chimallin C (ChmC), which adopts a nucleic acid-binding fold, binds RNA with high affinity in vitro, and binds phage mRNAs in infected cells. ChmC also forms phase-separated condensates with RNA in vitro. Targeted knockdown of ChmC using mRNA-targeting dCas13d results in accumulation of phage-encoded mRNAs in the phage nucleus, reduces phage protein production, and compromises virion assembly. Taken together, our data show that the conserved ChmC protein plays crucial roles in the viral life cycle, potentially by facilitating phage mRNA translocation through the nuclear shell to promote protein production and virion development.

6.
bioRxiv ; 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38370671

RESUMO

During mitosis, the Bub1-Bub3 complex concentrates at kinetochores, the microtubule-coupling interfaces on chromosomes, where it contributes to spindle checkpoint activation, kinetochore-spindle microtubule interactions, and protection of centromeric cohesion. Bub1 has a conserved N-terminal tetratricopeptide (TPR) domain followed by a binding motif for its conserved interactor Bub3. The current model for Bub1-Bub3 localization to kinetochores is that Bub3, along with its bound motif from Bub1, recognizes phosphorylated "MELT" motifs in the kinetochore scaffold protein Knl1. Motivated by the greater phenotypic severity of BUB-1 versus BUB-3 loss in C. elegans, we show that the BUB-1 TPR domain directly recognizes a distinct class of phosphorylated motifs in KNL-1 and that this interaction is essential for BUB-1-BUB-3 localization and function. BUB-3 recognition of phospho-MELT motifs additively contributes to drive super-stoichiometric accumulation of BUB-1-BUB-3 on its KNL-1 scaffold during mitotic entry. Bub1's TPR domain interacts with Knl1 in other species, suggesting that collaboration of TPR-dependent and Bub3-dependent interfaces in Bub1-Bub3 localization and functions may be conserved.

7.
EMBO J ; 43(5): 836-867, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38332377

RESUMO

The meiotic chromosome axis coordinates chromosome organization and interhomolog recombination in meiotic prophase and is essential for fertility. In S. cerevisiae, the HORMAD protein Hop1 mediates the enrichment of axis proteins at nucleosome-rich islands through a central chromatin-binding region (CBR). Here, we use cryoelectron microscopy to show that the Hop1 CBR directly recognizes bent nucleosomal DNA through a composite interface in its PHD and winged helix-turn-helix domains. Targeted disruption of the Hop1 CBR-nucleosome interface causes a localized reduction of axis protein binding and meiotic DNA double-strand breaks (DSBs) in axis islands and leads to defects in chromosome synapsis. Synthetic effects with mutants of the Hop1 regulator Pch2 suggest that nucleosome binding delays a conformational switch in Hop1 from a DSB-promoting, Pch2-inaccessible state to a DSB-inactive, Pch2-accessible state to regulate the extent of meiotic DSB formation. Phylogenetic analyses of meiotic HORMADs reveal an ancient origin of the CBR, suggesting that the mechanisms we uncover are broadly conserved.


Assuntos
Meiose , Proteínas de Saccharomyces cerevisiae , Nucleossomos , Microscopia Crioeletrônica , Filogenia , Saccharomyces cerevisiae/genética , DNA , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
bioRxiv ; 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38405785

RESUMO

Structural maintenance of chromosomes (SMC) protein complexes play pivotal roles in genome organization and maintenance across all domains of life. In prokaryotes, SMC family Wadjet complexes structurally resemble the widespread MukBEF genome-organizing complexes but serve a defensive role by inhibiting plasmid transformation. We previously showed that Wadjet specifically cleaves circular DNA; however, the molecular mechanism underlying DNA substrate recognition remains unclear. Here, we use in vitro single-molecule imaging to directly visualize DNA loop extrusion and plasmid cleavage by Wadjet. We find that Wadjet is a symmetric DNA loop extruder that simultaneously reels in DNA from both sides of a growing loop and that this activity requires a dimeric JetABC supercomplex containing two dimers of the JetC motor subunit. On surface-anchored plasmid DNAs, Wadjet extrudes the full length of a 44 kilobase pair plasmid, stalls, and then cleaves DNA. Our findings reveal the role of loop extrusion in the specific recognition and elimination of plasmids by Wadjet, and establish loop extrusion as an evolutionarily conserved mechanism among SMC complexes across kingdoms of life.

9.
bioRxiv ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38260510

RESUMO

Bacteria and the viruses that infect them (bacteriophages or phages) are engaged in an evolutionary arms race that has resulted in the development of hundreds of bacterial defense systems and myriad phage-encoded counterdefenses1-5. While the mechanisms of many bacterial defense systems are known1, how these systems avoid toxicity outside infection yet activate quickly upon sensing phage infection is less well understood. Here, we show that the bacterial Phage Anti-Restriction-Induced System (PARIS) operates as a toxin-antitoxin system, in which the antitoxin AriA sequesters and inactivates the toxin AriB until triggered by the T7 phage counterdefense protein Ocr. Using cryoelectron microscopy (cryoEM), we show that AriA is structurally similar to dimeric SMC-family ATPases but assembles into a distinctive homohexameric complex through two distinct oligomerization interfaces. In the absence of infection, the AriA hexamer binds up to three monomers of AriB, maintaining them in an inactive state. Ocr binding to the AriA-AriB complex triggers rearrangement of the AriA hexamer, releasing AriB and allowing it to dimerize and activate. AriB is a toprim/OLD-family nuclease whose activation arrests cell growth and inhibits phage propagation by globally inhibiting protein translation. Collectively, our findings reveal the intricate molecular mechanisms of a bacterial defense system that evolved in response to a phage counterdefense protein, and highlight how an SMC-family ATPase has been adapted as a bacterial infection sensor.

10.
bioRxiv ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37781618

RESUMO

Eukaryotic viruses assemble compartments required for genome replication, but no such organelles are known to be essential for prokaryotic viruses. Bacteriophages of the family Chimalliviridae sequester their genomes within a phage-generated organelle, the phage nucleus, which is enclosed by a lattice of viral protein ChmA. Using the dRfxCas13d-based knockdown system CRISPRi-ART, we show that ChmA is essential for the E. coli phage Goslar life cycle. Without ChmA, infections are arrested at an early stage in which the injected phage genome is enclosed in a membrane-bound vesicle capable of gene expression but not DNA replication. Not only do we demonstrate that the phage nucleus is essential for genome replication, but we also show that the Chimalliviridae early phage infection (EPI) vesicle is a transcriptionally active, phage-generated organelle.

11.
bioRxiv ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37790334

RESUMO

Large-genome bacteriophages (jumbo phages) of the Chimalliviridae family assemble a nucleus-like compartment bounded by a protein shell that protects the replicating phage genome from host-encoded restriction enzymes and CRISPR/Cas nucleases. While the nuclear shell provides broad protection against host nucleases, it necessitates transport of mRNA out of the nucleus-like compartment for translation by host ribosomes, and transport of specific proteins into the nucleus-like compartment to support DNA replication and mRNA transcription. Here we identify a conserved phage nuclear shell-associated protein that we term Chimallin C (ChmC), which adopts a nucleic acid-binding fold, binds RNA with high affinity in vitro, and binds phage mRNAs in infected cells. ChmC also forms phase-separated condensates with RNA in vitro. Targeted knockdown of ChmC using mRNA-targeting dCas13d halts infections at an early stage. Taken together, our data suggest that the conserved ChmC protein acts as a chaperone for phage mRNAs, potentially stabilizing these mRNAs and driving their translocation through the nuclear shell to promote translation and infection progression.

12.
bioRxiv ; 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37808663

RESUMO

Mobile introns containing homing endonucleases are widespread in nature and have long been assumed to be selfish elements that provide no benefit to the host organism. These genetic elements are common in viruses, but whether they confer a selective advantage is unclear. Here we studied a mobile intron in bacteriophage ΦPA3 and found its homing endonuclease gp210 contributes to viral competition by interfering with the virogenesis of co-infecting phage ΦKZ. We show that gp210 targets a specific sequence in its competitor ΦKZ, preventing the assembly of progeny viruses. This work reports the first demonstration of how a mobile intron can be deployed to engage in interference competition and provide a reproductive advantage. Given the ubiquity of introns, this selective advantage likely has widespread evolutionary implications in nature.

13.
bioRxiv ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37808811

RESUMO

Ubiquitination and related pathways play crucial roles in protein homeostasis, signaling, and innate immunity1-3. In these pathways, an enzymatic cascade of E1, E2, and E3 proteins conjugates ubiquitin or a ubiquitin-like protein (Ubl) to target-protein lysine residues4. Bacteria encode ancient relatives of E1 and Ubl proteins involved in sulfur metabolism5,6 but these proteins do not mediate Ubl-target conjugation, leaving open the question of whether bacteria can perform ubiquitination-like protein conjugation. Here, we demonstrate that a bacterial antiviral immune system encodes a complete ubiquitination pathway. Two structures of a bacterial E1:E2:Ubl complex reveal striking architectural parallels with canonical eukaryotic ubiquitination machinery. The bacterial E1 encodes an N-terminal inactive adenylation domain (IAD) and a C-terminal active adenylation domain (AAD) with a mobile α-helical insertion containing the catalytic cysteine (CYS domain). One structure reveals a pre-reaction state with the bacterial Ubl C-terminus positioned for adenylation, and the E1 CYS domain poised nearby for thioester formation. A second structure mimics an E1-to-E2 transthioesterification state, with the E1 CYS domain rotated outward and its catalytic cysteine adjacent to the bound E2. We show that a deubiquitinase (DUB) in the same pathway pre-processes the bacterial Ubl, exposing its C-terminal glycine for adenylation. Finally, we show that the bacterial E1 and E2 collaborate to conjugate Ubl to target-protein lysine residues. Together, these data reveal that bacteria possess bona fide ubiquitination systems with strong mechanistic and architectural parallels to canonical eukaryotic ubiquitination pathways, suggesting that these pathways arose first in bacteria.

14.
Nat Struct Mol Biol ; 30(11): 1653-1662, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37667030

RESUMO

In the arms race between bacteria and bacteriophages (phages), some large-genome jumbo phages have evolved a protein shell that encloses their replicating genome to protect it against host immune factors. By segregating the genome from the host cytoplasm, however, the 'phage nucleus' introduces the need to specifically translocate messenger RNA and proteins through the nuclear shell and to dock capsids on the shell for genome packaging. Here, we use proximity labeling and localization mapping to systematically identify proteins associated with the major nuclear shell protein chimallin (ChmA) and other distinctive structures assembled by these phages. We identify six uncharacterized nuclear-shell-associated proteins, one of which directly interacts with self-assembled ChmA. The structure and protein-protein interaction network of this protein, which we term ChmB, suggest that it forms pores in the ChmA lattice that serve as docking sites for capsid genome packaging and may also participate in messenger RNA and/or protein translocation.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Mapas de Interação de Proteínas , Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/química , RNA Mensageiro/análise
15.
bioRxiv ; 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37609250

RESUMO

Prokaryotes encode diverse anti-bacteriophage immune systems, including the single-protein Shedu nuclease. Here we reveal the structural basis for activation of Bacillus cereus Shedu. In the inactive homotetramer, a key catalytic residue in Shedu's nuclease domain is sequestered away from the catalytic site. Activation involves a conformational change that completes the active site and promotes assembly of a homo-octamer for coordinated double-strand DNA cleavage. Removal of Shedu's N-terminal domain ectopically activates the enzyme, suggesting that this domain allosterically inhibits Shedu in the absence of infection. Bioinformatic analysis of nearly 8,000 Shedu homologs reveals remarkable diversity in their N-terminal regulatory domains: we identify 79 domain families falling into eight functional classes, including diverse nucleic acid binding, enzymatic, and other domains. Together, these data reveal Shedu as a broad family of immune nucleases with a common nuclease core regulated by diverse N-terminal domains that likely respond to a range of infection-related signals.

16.
bioRxiv ; 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37292858

RESUMO

In the arms race between bacteria and bacteriophages (phages), some large-genome jumbo phages have evolved a protein shell that encloses their replicating genome to protect it against DNA-targeting immune factors. By segregating the genome from the host cytoplasm, however, the "phage nucleus" introduces the need to specifically transport mRNA and proteins through the nuclear shell, and to dock capsids on the shell for genome packaging. Here, we use proximity labeling and localization mapping to systematically identify proteins associated with the major nuclear shell protein chimallin (ChmA) and other distinctive structures assembled by these phages. We identify six uncharacterized nuclear shell-associated proteins, one of which directly interacts with self-assembled ChmA. The structure and protein-protein interaction network of this protein, which we term ChmB, suggests that it forms pores in the ChmA lattice that serve as docking sites for capsid genome packaging, and may also participate in mRNA and/or protein transport.

17.
Curr Biol ; 33(11): 2291-2299.e10, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37137308

RESUMO

During mitosis, chromosomes assemble kinetochores to dynamically couple with spindle microtubules.1,2 Kinetochores also function as signaling hubs directing mitotic progression by recruiting and controlling the fate of the anaphase promoting complex/cyclosome (APC/C) activator CDC-20.3,4,5 Kinetochores either incorporate CDC-20 into checkpoint complexes that inhibit the APC/C or dephosphorylate CDC-20, which allows it to interact with and activate the APC/C.4,6 The importance of these two CDC-20 fates likely depends on the biological context. In human somatic cells, the major mechanism controlling mitotic progression is the spindle checkpoint. By contrast, progression through mitosis during the cell cycles of early embryos is largely checkpoint independent.7,8,9,10 Here, we first show that CDC-20 phosphoregulation controls mitotic duration in the C. elegans embryo and defines a checkpoint-independent temporal mitotic optimum for robust embryogenesis. CDC-20 phosphoregulation occurs at kinetochores and in the cytosol. At kinetochores, the flux of CDC-20 for local dephosphorylation requires an ABBA motif on BUB-1 that directly interfaces with the structured WD40 domain of CDC-20.6,11,12,13 We next show that a conserved "STP" motif in BUB-1 that docks the mitotic kinase PLK-114 is necessary for CDC-20 kinetochore recruitment and timely mitotic progression. The kinase activity of PLK-1 is required for CDC-20 to localize to kinetochores and phosphorylates the CDC-20-binding ABBA motif of BUB-1 to promote BUB-1-CDC-20 interaction and mitotic progression. Thus, the BUB-1-bound pool of PLK-1 ensures timely mitosis during embryonic cell cycles by promoting CDC-20 recruitment to the vicinity of kinetochore-localized phosphatase activity.


Assuntos
Caenorhabditis elegans , Cinetocoros , Animais , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Caenorhabditis elegans/genética , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centers for Disease Control and Prevention, U.S. , Cinetocoros/metabolismo , Mitose , Fuso Acromático/metabolismo , Estados Unidos
18.
Cell Rep ; 42(5): 112432, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37120812

RESUMO

We recently discovered that some bacteriophages establish a nucleus-like replication compartment (phage nucleus), but the core genes that define nucleus-based phage replication and their phylogenetic distribution were still to be determined. Here, we show that phages encoding the major phage nucleus protein chimallin share 72 conserved genes encoded within seven gene blocks. Of these, 21 core genes are unique to nucleus-forming phage, and all but one of these genes encode proteins of unknown function. We propose that these phages comprise a novel viral family we term Chimalliviridae. Fluorescence microscopy and cryoelectron tomography studies of Erwinia phage vB_EamM_RAY confirm that many of the key steps of nucleus-based replication are conserved among diverse chimalliviruses and reveal variations on this replication mechanism. This work expands our understanding of phage nucleus and PhuZ spindle diversity and function, providing a roadmap for identifying key mechanisms underlying nucleus-based phage replication.


Assuntos
Bacteriófagos , Erwinia , Bacteriófagos/genética , Bacteriófagos/metabolismo , Erwinia/genética , Erwinia/metabolismo , Filogenia , Genoma Viral , DNA Viral/genética , DNA Viral/metabolismo
19.
PLoS Genet ; 19(4): e1010708, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37058535

RESUMO

During meiotic prophase, the essential events of homolog pairing, synapsis, and recombination are coordinated with meiotic progression to promote fidelity and prevent aneuploidy. The conserved AAA+ ATPase PCH-2 coordinates these events to guarantee crossover assurance and accurate chromosome segregation. How PCH-2 accomplishes this coordination is poorly understood. Here, we provide evidence that PCH-2 decelerates pairing, synapsis and recombination in C. elegans by remodeling meiotic HORMADs. We propose that PCH-2 converts the closed versions of these proteins, which drive these meiotic prophase events, to unbuckled conformations, destabilizing interhomolog interactions and delaying meiotic progression. Further, we find that PCH-2 distributes this regulation among three essential meiotic HORMADs in C. elegans: PCH-2 acts through HTP-3 to regulate pairing and synapsis, HIM-3 to promote crossover assurance, and HTP-1 to control meiotic progression. In addition to identifying a molecular mechanism for how PCH-2 regulates interhomolog interactions, our results provide a possible explanation for the expansion of the meiotic HORMAD family as a conserved evolutionary feature of meiosis. Taken together, our work demonstrates that PCH-2's remodeling of meiotic HORMADs has functional consequences for the rate and fidelity of homolog pairing, synapsis, recombination and meiotic progression, ensuring accurate meiotic chromosome segregation.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Meiose/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Prófase , Pareamento Cromossômico/genética , ATPases Associadas a Diversas Atividades Celulares/genética , Proteínas de Ciclo Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...